Your browser doesn't support javascript.
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
1.
Nature ; 603(7902): 587-598, 2022 03.
Artículo en Inglés | MEDLINE | ID: covidwho-1655590

RESUMEN

SARS-CoV-2 infection is benign in most individuals but, in around 10% of cases, it triggers hypoxaemic COVID-19 pneumonia, which leads to critical illness in around 3% of cases. The ensuing risk of death (approximately 1% across age and gender) doubles every five years from childhood onwards and is around 1.5 times greater in men than in women. Here we review the molecular and cellular determinants of critical COVID-19 pneumonia. Inborn errors of type I interferons (IFNs), including autosomal TLR3 and X-chromosome-linked TLR7 deficiencies, are found in around 1-5% of patients with critical pneumonia under 60 years old, and a lower proportion in older patients. Pre-existing auto-antibodies neutralizing IFNα, IFNß and/or IFNω, which are more common in men than in women, are found in approximately 15-20% of patients with critical pneumonia over 70 years old, and a lower proportion in younger patients. Thus, at least 15% of cases of critical COVID-19 pneumonia can be explained. The TLR3- and TLR7-dependent production of type I IFNs by respiratory epithelial cells and plasmacytoid dendritic cells, respectively, is essential for host defence against SARS-CoV-2. In ways that can depend on age and sex, insufficient type I IFN immunity in the respiratory tract during the first few days of infection may account for the spread of the virus, leading to pulmonary and systemic inflammation.


Asunto(s)
COVID-19/genética , COVID-19/inmunología , Interferón Tipo I/inmunología , Distribución por Edad , Autoanticuerpos/inmunología , COVID-19/mortalidad , COVID-19/patología , Enfermedad Crítica , Células Dendríticas/inmunología , Estudio de Asociación del Genoma Completo , Humanos , Interferón Tipo I/genética , Distribución por Sexo , Receptor Toll-Like 3/deficiencia , Receptor Toll-Like 7/deficiencia , Receptor Toll-Like 7/genética
2.
J Clin Immunol ; 42(1): 1-9, 2022 01.
Artículo en Inglés | MEDLINE | ID: covidwho-1482248

RESUMEN

BACKGROUND: Coronavirus disease 2019 (COVID-19) exhibits a wide spectrum of clinical manifestations, ranging from asymptomatic to critical conditions. Understanding the mechanism underlying life-threatening COVID-19 is instrumental for disease prevention and treatment in individuals with a high risk. OBJECTIVES: We aimed to identify the genetic cause for critical COVID-19 pneumonia in a patient with a preexisting inborn error of immunity (IEI). METHODS: Serum levels of specific antibodies against the virus and autoantibodies against type I interferons (IFNs) were measured. Whole exome sequencing was performed, and the impacts of candidate gene variants were investigated. We also evaluated 247 ataxia-telangiectasia (A-T) patients in the Iranian IEI registry. RESULTS: We report a 7-year-old Iranian boy with a preexisting hyper IgM syndrome who developed critical COVID-19 pneumonia. IgM only specific COVID-19 immune response was detected but no autoantibodies against type I IFN were observed. A homozygous deleterious mutation in the ATM gene was identified, which together with his antibody deficiency, radiosensitivity, and neurological signs, established a diagnosis of A-T. Among the 247 A-T patients evaluated, 36 had SARS-CoV-2 infection, but all had mild symptoms or were asymptomatic except the index patient. A hemizygous deleterious mutation in the TLR7 gene was subsequently identified in the patient. CONCLUSIONS: We report a unique IEI patient with combined ATM and TLR7 deficiencies. The two genetic defects underlie A-T and critical COVID-19 in this patient, respectively.


Asunto(s)
Ataxia Telangiectasia/genética , COVID-19/genética , Neumonía/genética , Receptor Toll-Like 7/deficiencia , Receptor Toll-Like 7/genética , Niño , Humanos , Irán , Masculino
3.
Sci Immunol ; 6(62)2021 08 19.
Artículo en Inglés | MEDLINE | ID: covidwho-1434876

RESUMEN

Autosomal inborn errors of type I IFN immunity and autoantibodies against these cytokines underlie at least 10% of critical COVID-19 pneumonia cases. We report very rare, biochemically deleterious X-linked TLR7 variants in 16 unrelated male individuals aged 7 to 71 years (mean: 36.7 years) from a cohort of 1,202 male patients aged 0.5 to 99 years (mean: 52.9 years) with unexplained critical COVID-19 pneumonia. None of the 331 asymptomatically or mildly infected male individuals aged 1.3 to 102 years (mean: 38.7 years) tested carry such TLR7 variants (p = 3.5 × 10-5). The phenotypes of five hemizygous relatives of index cases infected with SARS-CoV-2 include asymptomatic or mild infection (n=2, 5 and 38 years), or moderate (n=1, 5 years), severe (n=1, 27 years), or critical (n=1, 29 years) pneumonia. Two boys (aged 7 and 12 years) from a cohort of 262 male patients with severe COVID-19 pneumonia (mean: 51.0 years) are hemizygous for a deleterious TLR7 variant. The cumulative allele frequency for deleterious TLR7 variants in the male general population is < 6.5x10-4 We also show that blood B cell lines and myeloid cell subsets from the patients do not respond to TLR7 stimulation, a phenotype rescued by wild-type TLR7 The patients' blood plasmacytoid dendritic cells (pDCs) produce low levels of type I IFNs in response to SARS-CoV-2. Overall, X-linked recessive TLR7 deficiency is a highly penetrant genetic etiology of critical COVID-19 pneumonia, in about 1.8% of male patients below the age of 60 years. Human TLR7 and pDCs are essential for protective type I IFN immunity against SARS-CoV-2 in the respiratory tract.


Asunto(s)
COVID-19/complicaciones , Enfermedades Genéticas Ligadas al Cromosoma X/complicaciones , Enfermedades del Sistema Inmune/complicaciones , Receptor Toll-Like 7/deficiencia , Adolescente , Adulto , Anciano , Anciano de 80 o más Años , Alelos , Niño , Preescolar , Humanos , Lactante , Masculino , Persona de Mediana Edad , Linaje , Penetrancia , Receptor Toll-Like 7/genética , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA